Midterm I study guide

1. 1 - Elementary operations

- systems of equations
- solution set
- inconsistent vs. consistent
- 2 equations in 2 variables: solution set is intersection of corresponding lines
- Parametric form of solution-parameter can be anything. (How to find a specific solution?)
- Augmented matrix
-turn system into augmented matrix
-3 row operations allowed
1.2 -Gaussian Elimination
- row-echelon vs. reduced wow echelon
- Gaussian algorithm: steps to get matrix in RE form.
- Gaussian elimination: steps to solve a system
- Rank = \# of leading ones in RE form
- \# of parameters needed in solution $=(\#$ of variables)-vank
1.3-Homogeneors equations
- homogeneous equation: no constant terms
- homog. system: $\left[\begin{array}{l|l}A & 0\end{array}\right]$
$\hat{T}_{\text {vector }}$
- trivial solution: all zeros, nontrivial: all other solutions
- \# variables $>$ \# equations \Rightarrow nontrivial solutions
- linear combinations (definition?)
- solutions of homog. systems are linear combinations of basic solutions (one for each parameter)
2.1 - Matrix notation + addition
- How to denote rows/columns/entries
- How to add matrices (when can you add them?)
- Transpose, symmetric matrices
2.2 - Matrix-vector multiplication
- When can we multiply A and \vec{x} ?
- How to multiply? (Whichever method works for you)
- Properties of cult + addition
- Converting between system of equs and matrix form $A \vec{x}=\vec{b}$.
- $A \vec{x}=\vec{b}$ vs. $A \vec{x}=\overrightarrow{0}$ (solution of $A \vec{x}=\vec{b}$ is $\vec{x}_{1}+\vec{x}_{0}$)
- Dot product
- Matrix transformations:
- $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ such that $T(\vec{x})=A \vec{x}$.
- T_{A} is transf. associated to A,
defined $T_{A}(\vec{x})=A \vec{x}$.
2.3 - matrix multiplication
- Application to transformations: $T_{A} \circ T_{B}=T_{A B}$
- When is $A B$ defined? How to compute? (Dot product rule)
- Matrices don't usually commute!! $A B \neq B A$.
- Properties of cult + addition
- Block matrices (not super important)
2.4 - Matrix inverses
- Def of inverse/invertible
- inverses are unique, inverse of A is A^{-1}
- 2×2 determinant + inverse, $\operatorname{det} \neq 0 \Leftrightarrow$ invertible
- A invertible $\Longrightarrow A \vec{x}=\vec{b}$ has unique solution $\vec{x}=A^{-1} \vec{b}$
- Can also use A^{-1} to solve things like $A B=C$ for B.

$$
\begin{gathered}
\left(A^{-1} A B=A^{-1} C\right) \\
B_{B}^{\prime \prime}
\end{gathered}
$$

- Inversion method:

$$
[A \quad I] \underset{\text { row ops }}{ }\left[\begin{array}{ll}
I & A^{-1}
\end{array}\right]
$$

- Know the properties of inverses (e.g. $\left.(A B)^{-1}=B^{-1} A^{-1}\right)$
- equivalent conditions for being invertible.
- matrix transformation T_{A} has inverse $\Leftrightarrow A$ invertible.

Then $\left(T_{A}\right)^{-1}=T_{A^{-1}}$.
2.5 -Elementary matrices

- Elementary matrix: $I \underset{\begin{array}{c}\text { one } \\ \text { operation }\end{array}}{\longrightarrow} E, 3$ types
- If $A \rightarrow B$ by one wow operation, then $B=E A$ Corresponding
elem. matrix
- How to find inverse of an elementary matrix (all elem. matrices are invertible)
$\underset{\substack{\hat{\begin{subarray}{c}{2} }}} \\{\text { invertible }}\end{subarray}}{A} \rightarrow \underset{\substack{\prime \prime \\ E_{1} A}}{A_{1}} \rightarrow \underset{\substack{\text { n } \\ E_{2} E_{1} A}}{A_{2}} \rightarrow \ldots \underset{E_{n} E_{n-1}^{\prime \prime} \cdots E_{1} A}{ }$
so $A^{-1}=E_{n} E_{n-1} \ldots E_{\text {, }}$ and $A=E_{1}^{-1} E_{2}^{-1} \ldots E_{n}^{-1}$
\Rightarrow Invertible matrices are products of elem. matrices.

