Midterm I study guide

1.1 - Elementary operations

- · Systems of equations
 - -solution set
 - inconsistent vs. consistent
- 2 equations in 2 variables: solution set is intersection of corresponding lines
- · Parametric form of solution—parameter can be anything.

 (How to find a specific solution?)
- · Augmented matrix
 - turn system into augmented matrix
 - -3 row operations allowed

1.2 - Gaussian Elimination

- · row-echelon vs. reduced now echelon
- · Gaussian algorithm: steps to get matrix in RE form.
- · Gaussian elimination: steps to solve a system
- · Rank = # of leading ones in RE form
- # of parameters needed in solution = (# of variables) rank

1.3 - Homogeneous equations

- · homogeneous equation: no constant terms
- homog. system: [A | O]

 O vector
- · trivial solution: all Zeros, nontrivial: all other solutions
- · # Variables > # equations => nontrivial solutions
- · linear combinations (definition?)
 - solutions of homog. systems are linear combinations of basic solutions (one for each parameter)

2.1 - Matrix notation + addition

- · How to denote rows/columns/entries
- · How to add matrices (when can you add them?)
- · Transpose, symmetric matrices

2.2 - Matrix-vector multiplication

- · When can we multiply A and x?
- · How to multiply? (Whichever method works for you)
- · Properties of mult + addition
- · converting between system of egns and matrix form A= b.

•
$$A\vec{x} = \vec{b}$$
 vs. $A\vec{x} = \vec{0}$ (solution of $A\vec{x} = \vec{b}$ is $\vec{x}_1 + \vec{x}_2$)

solution solution of $A\vec{x} = \vec{b}$ is $\vec{x}_1 + \vec{x}_2$)

- · Dot product
- · Matrix transformations:

-T:
$$\mathbb{R}^{h} \to \mathbb{R}^{m}$$
 such that $T(\vec{x}) = A\vec{x}$.

- T_A is transf. associated to A, defined $T_A(\vec{x}) = A\vec{x}$.

2.3 - matrix multiplication

- · Application to transformations: TA oTB = TAR
 - · When is AB defined? How to compute? (Dot product rule)
- · Matrices don't usually commute!! AB + BA.
- · Properties of mult + addition
- · Block matrices (not super important)

2.4 - Matrix inverses

- · Def of inverse/invertible
 - · inverses are unique, inverse of A is A-1
 - · 2×2 determinant + inverse, de+≠0 = invertible

- A invertible $\implies A\vec{x} = \vec{b}$ has unique solution $\vec{x} = \vec{A}^{-1}\vec{b}$
 - Can also use A^{-1} to solve things like AB = C for B. $(A^{-1}AB = A^{-1}C)$
- · Inversion method:

- know the properties of inverses (e.g. (AB) B-A-1)
- · equivalent conditions for being invertible.
- matrix transformation T_A has inverse \Longrightarrow A invertible. Then $(T_A)^{-1} = T_{A^{-1}}$.

2.5 - Elementary matrices

- Elementary matrix: I => E, 3 types

 one row
 operation
- If $A \rightarrow B$ by one now operation, then B = EAcorresponds
- · How to find inverse of an elementary matrix (all elem. matrices are invertible)
- $A \rightarrow A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow I$ invertible $E_1A \rightarrow E_2E_1A \rightarrow \cdots \rightarrow E_nE_{n-1}\cdots \in A$

=> Invertible matrices are products of elem. matrices.